mirror of
https://github.com/lemeow125/StudE-Frontend.git
synced 2025-04-19 16:31:21 +08:00
179 lines
5.3 KiB
TypeScript
179 lines
5.3 KiB
TypeScript
import * as React from "react";
|
|
import { View, Text } from "react-native";
|
|
import {
|
|
StudentStatusFilterType,
|
|
LocationType,
|
|
subjectUserMapType,
|
|
StudentStatusListType,
|
|
StudentStatusFilterTypeFlattened,
|
|
} from "../../interfaces/Interfaces";
|
|
import { Double, Float } from "react-native/Libraries/Types/CodegenTypes";
|
|
|
|
export default function ParseStudyGroupList(
|
|
data: any,
|
|
user_location: LocationType
|
|
) {
|
|
// Circle generation for students in a study group
|
|
let result: any[] = [];
|
|
// We first remove any instances that do not have a study group associated with it
|
|
let data_filtered = data.filter(
|
|
(item: StudentStatusFilterType) =>
|
|
item.study_group !== undefined && item.study_group.length > 0
|
|
);
|
|
// console.log("Filtered Data:", data_filtered);
|
|
// Then we flatten the data so that all attributes are in the first layer
|
|
// We first flatten the data to remove nested entries
|
|
let data_flattened = data_filtered.map((item: StudentStatusFilterType) => ({
|
|
active: item.active,
|
|
distance: item.distance,
|
|
landmark: item.landmark,
|
|
latitude: item.location.latitude,
|
|
longitude: item.location.longitude,
|
|
study_group: item.study_group,
|
|
subject: item.subject,
|
|
user: item.user,
|
|
weight: 1,
|
|
}));
|
|
// console.log("Flattened Data:", data_flattened);
|
|
|
|
// We take from the array all unique study groups
|
|
let unique_studygroups = [
|
|
...new Set(
|
|
data_flattened.map((item: StudentStatusFilterType) => item.study_group)
|
|
),
|
|
];
|
|
|
|
// Then we create arrays unique to each subject
|
|
unique_studygroups.forEach((studygroup, index: number) => {
|
|
// We build another array for each subject, including only those instances that are the same subject name
|
|
let unique_subject_list = data_flattened
|
|
.filter(
|
|
(item: StudentStatusFilterTypeFlattened) =>
|
|
item.study_group === studygroup
|
|
)
|
|
.map((item: StudentStatusFilterTypeFlattened) => ({
|
|
active: item.active,
|
|
distance: item.distance,
|
|
landmark: item.landmark,
|
|
latitude: item.latitude,
|
|
longitude: item.longitude,
|
|
study_group: item.study_group,
|
|
subject: item.subject,
|
|
user: item.user,
|
|
weight: 1,
|
|
}));
|
|
|
|
/*
|
|
let unique_subject_object = data_flattened.filter(
|
|
(item: StudentStatusFilterTypeFlattened) => item.subject === subject
|
|
);
|
|
*/
|
|
|
|
// We get the circle's center by averaging all the points
|
|
// Calculate the average latitude and longitude
|
|
const totalLat = unique_subject_list.reduce(
|
|
(sum: Double, point: LocationType) => sum + point.latitude,
|
|
0
|
|
);
|
|
const totalLng = unique_subject_list.reduce(
|
|
(sum: Double, point: LocationType) => sum + point.longitude,
|
|
0
|
|
);
|
|
|
|
let avgLat = totalLat / unique_subject_list.length;
|
|
let avgLng = totalLng / unique_subject_list.length;
|
|
|
|
// console.log("Center Latitude:", avgLat);
|
|
// console.log("Center Longitude:", avgLng);
|
|
|
|
// Haversine Distance Function
|
|
function haversineDistance(
|
|
lat1: number,
|
|
lon1: number,
|
|
lat2: number,
|
|
lon2: number
|
|
) {
|
|
function toRad(x: number) {
|
|
return (x * Math.PI) / 180;
|
|
}
|
|
|
|
lat1 = toRad(lat1);
|
|
lon1 = toRad(lon1);
|
|
lat2 = toRad(lat2);
|
|
lon2 = toRad(lon2);
|
|
|
|
let dLat = lat2 - lat1;
|
|
let dLon = lon2 - lon1;
|
|
|
|
let a =
|
|
Math.sin(dLat / 2) * Math.sin(dLat / 2) +
|
|
Math.cos(lat1) *
|
|
Math.cos(lat2) *
|
|
Math.sin(dLon / 2) *
|
|
Math.sin(dLon / 2);
|
|
let c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
|
|
|
|
// Multiply by Earth's radius (in kilometers) to obtain distance
|
|
let distance = 6371 * c;
|
|
|
|
// Convert to meters
|
|
return distance * 1000;
|
|
}
|
|
|
|
// We now calculate the radius of the circle using the Haversine Distance Formula
|
|
// For each entry, we calculate the Haversine Distance from the user's location.
|
|
// The largest value is used as the circle radius
|
|
|
|
let circle_radius = Math.max(
|
|
...unique_subject_list.map(
|
|
(item: StudentStatusFilterTypeFlattened, index: number) => {
|
|
let distance = haversineDistance(
|
|
item.latitude,
|
|
item.longitude,
|
|
user_location.latitude,
|
|
user_location.longitude
|
|
);
|
|
|
|
/*console.log(
|
|
"Haversine Distance for entry #",
|
|
index + 1,
|
|
":",
|
|
distance
|
|
);*/
|
|
return distance;
|
|
}
|
|
)
|
|
);
|
|
// console.log("Radius:", circle_radius);
|
|
|
|
// We now build the object that we will return
|
|
const subjectUserMap: subjectUserMapType = {
|
|
subject: "",
|
|
study_group: "",
|
|
users: [],
|
|
latitude: 0,
|
|
longitude: 0,
|
|
radius: 0,
|
|
};
|
|
unique_subject_list.forEach((item: StudentStatusFilterType) => {
|
|
if (!subjectUserMap["users"]) {
|
|
subjectUserMap["users"] = [];
|
|
}
|
|
if (!subjectUserMap["study_group"]) {
|
|
subjectUserMap["study_group"] = unique_subject_list[0].study_group;
|
|
}
|
|
subjectUserMap["subject"] = item.subject;
|
|
subjectUserMap["latitude"] = avgLat;
|
|
subjectUserMap["longitude"] = avgLng;
|
|
subjectUserMap["radius"] = circle_radius;
|
|
subjectUserMap["users"].push(item.user);
|
|
});
|
|
console.log(subjectUserMap);
|
|
|
|
result = result.concat([subjectUserMap]);
|
|
});
|
|
|
|
console.log("Final Result:", result);
|
|
|
|
return result;
|
|
}
|