Added Haversine Formula calculation to get the radius of circles for study groups required for rendering

This commit is contained in:
Keannu Christian Bernasol 2023-09-09 20:45:29 +08:00
parent 85e2a13071
commit 7b9d05f84b
4 changed files with 225 additions and 159 deletions

View file

@ -1,12 +1,12 @@
import { Callout } from "react-native-maps";
import { LocationType } from "../../interfaces/Interfaces";
import { RawLocationType } from "../../interfaces/Interfaces";
import styles from "../../styles";
import { Text } from "react-native";
// Map popup for user's location
type props = {
location: LocationType;
location: RawLocationType;
studying: boolean;
subject?: string;
};

View file

@ -0,0 +1,125 @@
import * as React from "react";
import { View, Text } from "react-native";
import {
StudentStatusFilterType,
LocationType,
subjectUserMapType,
StudentStatusListType,
StudentStatusFilterTypeFlattened,
} from "../../interfaces/Interfaces";
import { Double, Float } from "react-native/Libraries/Types/CodegenTypes";
export default function ParseStudyGroupList(data: any) {
let result: any[] = [];
// Circle generation for students in a study group
// We first flatten the data to remove nested entries
console.log("Initial Data:", data);
let flattened_data = data
.filter((item: StudentStatusFilterType) => item.study_group !== "")
.map((item: StudentStatusFilterType) => ({
active: item.active,
distance: item.distance,
landmark: item.landmark,
latitude: item.location.latitude,
longitude: item.location.longitude,
study_group: item.study_group,
subject: item.subject,
user: item.user,
weight: 1,
}));
console.log("Filtered Data:", flattened_data);
// We get each unique subject
let unique_subjects = [
...new Set(
flattened_data.map((item: StudentStatusFilterType) => item.subject)
),
];
// Then append all entries belonging to that subject to its own array
unique_subjects.forEach((subject, index: number) => {
index++;
let filteredData = flattened_data.filter(
(item: StudentStatusFilterTypeFlattened) => item.subject === subject
);
console.log("Subject #", index, "-", filteredData[0].subject, filteredData);
// We get the circle's center by averaging all the points
// Calculate the average latitude and longitude
const totalLat = filteredData.reduce(
(sum: Double, point: LocationType) => sum + point.latitude,
0
);
const totalLng = filteredData.reduce(
(sum: Double, point: LocationType) => sum + point.longitude,
0
);
const avgLat = totalLat / filteredData.length;
const avgLng = totalLng / filteredData.length;
console.log("Center Latitude:", avgLat);
console.log("Center Longitude:", avgLng);
// We now calculate the radius of the circle using the Haversine Distance Formula
function haversineDistance(
lat1: number,
lon1: number,
lat2: number,
lon2: number
) {
function toRad(x: number) {
return (x * Math.PI) / 180;
}
var R = 6371; // km
var x1 = lat2 - lat1;
var dLat = toRad(x1);
var x2 = lon2 - lon1;
var dLon = toRad(x2);
var a =
Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(toRad(lat1)) *
Math.cos(toRad(lat2)) *
Math.sin(dLon / 2) *
Math.sin(dLon / 2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
var d = R * c;
return d;
}
let circle_radius =
Math.max(
...filteredData.map((item: StudentStatusFilterTypeFlattened) =>
haversineDistance(avgLat, avgLng, item.latitude, item.longitude)
)
) * 1000;
console.log("Radius:", circle_radius);
// We now build the object
const subjectUserMap: subjectUserMapType = {
subject: "",
users: [],
latitude: 0,
longitude: 0,
radius: 0,
};
filteredData.forEach((item: StudentStatusFilterType) => {
if (!subjectUserMap["users"]) {
subjectUserMap["users"] = [];
}
subjectUserMap["subject"] = item.subject;
subjectUserMap["latitude"] = avgLat;
subjectUserMap["longitude"] = avgLng;
subjectUserMap["radius"] = circle_radius;
subjectUserMap["users"].push(item.user);
});
console.log(subjectUserMap);
result = result.concat([subjectUserMap]);
});
// console.log("Final Result:", result);
return result;
}