mirror of
https://github.com/lemeow125/StudE-Frontend.git
synced 2025-01-18 23:03:03 +08:00
Fixed and made changes to the Haversine distance formula calculation. We now point it to the user's location as intended
This commit is contained in:
parent
7b9d05f84b
commit
00928ac947
2 changed files with 106 additions and 53 deletions
|
@ -9,59 +9,82 @@ import {
|
|||
} from "../../interfaces/Interfaces";
|
||||
import { Double, Float } from "react-native/Libraries/Types/CodegenTypes";
|
||||
|
||||
export default function ParseStudyGroupList(data: any) {
|
||||
let result: any[] = [];
|
||||
export default function ParseStudyGroupList(
|
||||
data: any,
|
||||
user_location: LocationType
|
||||
) {
|
||||
// Circle generation for students in a study group
|
||||
let result: any[] = [];
|
||||
// We first remove any instances that do not have a study group associated with it
|
||||
let data_filtered = data.filter(
|
||||
(item: StudentStatusFilterType) => item.study_group !== ""
|
||||
);
|
||||
// console.log("Filtered Data:", data_filtered);
|
||||
// Then we flatten the data so that all attributes are in the first layer
|
||||
// We first flatten the data to remove nested entries
|
||||
console.log("Initial Data:", data);
|
||||
let flattened_data = data
|
||||
.filter((item: StudentStatusFilterType) => item.study_group !== "")
|
||||
.map((item: StudentStatusFilterType) => ({
|
||||
active: item.active,
|
||||
distance: item.distance,
|
||||
landmark: item.landmark,
|
||||
latitude: item.location.latitude,
|
||||
longitude: item.location.longitude,
|
||||
study_group: item.study_group,
|
||||
subject: item.subject,
|
||||
user: item.user,
|
||||
weight: 1,
|
||||
}));
|
||||
console.log("Filtered Data:", flattened_data);
|
||||
let data_flattened = data_filtered.map((item: StudentStatusFilterType) => ({
|
||||
active: item.active,
|
||||
distance: item.distance,
|
||||
landmark: item.landmark,
|
||||
latitude: item.location.latitude,
|
||||
longitude: item.location.longitude,
|
||||
study_group: item.study_group,
|
||||
subject: item.subject,
|
||||
user: item.user,
|
||||
weight: 1,
|
||||
}));
|
||||
// console.log("Flattened Data:", data_flattened);
|
||||
|
||||
// We get each unique subject
|
||||
// We take from the array all unique subject names
|
||||
let unique_subjects = [
|
||||
...new Set(
|
||||
flattened_data.map((item: StudentStatusFilterType) => item.subject)
|
||||
data_flattened.map((item: StudentStatusFilterType) => item.subject)
|
||||
),
|
||||
];
|
||||
|
||||
// Then append all entries belonging to that subject to its own array
|
||||
// Then we create arrays unique to each subject
|
||||
unique_subjects.forEach((subject, index: number) => {
|
||||
index++;
|
||||
let filteredData = flattened_data.filter(
|
||||
// We build another array for each subject, including only those instances that are the same subject name
|
||||
let unique_subject_list = data_flattened
|
||||
.filter(
|
||||
(item: StudentStatusFilterTypeFlattened) => item.subject === subject
|
||||
)
|
||||
.map((item: StudentStatusFilterTypeFlattened) => ({
|
||||
active: item.active,
|
||||
distance: item.distance,
|
||||
landmark: item.landmark,
|
||||
latitude: item.latitude,
|
||||
longitude: item.longitude,
|
||||
study_group: item.study_group,
|
||||
subject: item.subject,
|
||||
user: item.user,
|
||||
weight: 1,
|
||||
}));
|
||||
|
||||
/*
|
||||
let unique_subject_object = data_flattened.filter(
|
||||
(item: StudentStatusFilterTypeFlattened) => item.subject === subject
|
||||
);
|
||||
console.log("Subject #", index, "-", filteredData[0].subject, filteredData);
|
||||
*/
|
||||
|
||||
// We get the circle's center by averaging all the points
|
||||
// Calculate the average latitude and longitude
|
||||
const totalLat = filteredData.reduce(
|
||||
const totalLat = unique_subject_list.reduce(
|
||||
(sum: Double, point: LocationType) => sum + point.latitude,
|
||||
0
|
||||
);
|
||||
const totalLng = filteredData.reduce(
|
||||
const totalLng = unique_subject_list.reduce(
|
||||
(sum: Double, point: LocationType) => sum + point.longitude,
|
||||
0
|
||||
);
|
||||
|
||||
const avgLat = totalLat / filteredData.length;
|
||||
const avgLng = totalLng / filteredData.length;
|
||||
let avgLat = totalLat / unique_subject_list.length;
|
||||
let avgLng = totalLng / unique_subject_list.length;
|
||||
|
||||
console.log("Center Latitude:", avgLat);
|
||||
console.log("Center Longitude:", avgLng);
|
||||
|
||||
// We now calculate the radius of the circle using the Haversine Distance Formula
|
||||
// console.log("Center Latitude:", avgLat);
|
||||
// console.log("Center Longitude:", avgLng);
|
||||
|
||||
// Haversine Distance Function
|
||||
function haversineDistance(
|
||||
lat1: number,
|
||||
lon1: number,
|
||||
|
@ -72,31 +95,56 @@ export default function ParseStudyGroupList(data: any) {
|
|||
return (x * Math.PI) / 180;
|
||||
}
|
||||
|
||||
var R = 6371; // km
|
||||
var x1 = lat2 - lat1;
|
||||
var dLat = toRad(x1);
|
||||
var x2 = lon2 - lon1;
|
||||
var dLon = toRad(x2);
|
||||
var a =
|
||||
lat1 = toRad(lat1);
|
||||
lon1 = toRad(lon1);
|
||||
lat2 = toRad(lat2);
|
||||
lon2 = toRad(lon2);
|
||||
|
||||
let dLat = lat2 - lat1;
|
||||
let dLon = lon2 - lon1;
|
||||
|
||||
let a =
|
||||
Math.sin(dLat / 2) * Math.sin(dLat / 2) +
|
||||
Math.cos(toRad(lat1)) *
|
||||
Math.cos(toRad(lat2)) *
|
||||
Math.cos(lat1) *
|
||||
Math.cos(lat2) *
|
||||
Math.sin(dLon / 2) *
|
||||
Math.sin(dLon / 2);
|
||||
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
|
||||
var d = R * c;
|
||||
return d;
|
||||
let c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
|
||||
|
||||
// Multiply by Earth's radius (in kilometers) to obtain distance
|
||||
let distance = 6371 * c;
|
||||
|
||||
// Convert to meters
|
||||
return distance * 1000;
|
||||
}
|
||||
|
||||
let circle_radius =
|
||||
Math.max(
|
||||
...filteredData.map((item: StudentStatusFilterTypeFlattened) =>
|
||||
haversineDistance(avgLat, avgLng, item.latitude, item.longitude)
|
||||
)
|
||||
) * 1000;
|
||||
console.log("Radius:", circle_radius);
|
||||
// We now calculate the radius of the circle using the Haversine Distance Formula
|
||||
// For each entry, we calculate the Haversine Distance from the user's location.
|
||||
// The largest value is used as the circle radius
|
||||
|
||||
// We now build the object
|
||||
let circle_radius = Math.max(
|
||||
...unique_subject_list.map(
|
||||
(item: StudentStatusFilterTypeFlattened, index: number) => {
|
||||
let distance = haversineDistance(
|
||||
item.latitude,
|
||||
item.longitude,
|
||||
user_location.latitude,
|
||||
user_location.longitude
|
||||
);
|
||||
|
||||
console.log(
|
||||
"Haversine Distance for entry #",
|
||||
index + 1,
|
||||
":",
|
||||
distance
|
||||
);
|
||||
return distance;
|
||||
}
|
||||
)
|
||||
);
|
||||
// console.log("Radius:", circle_radius);
|
||||
|
||||
// We now build the object that we will return
|
||||
const subjectUserMap: subjectUserMapType = {
|
||||
subject: "",
|
||||
users: [],
|
||||
|
@ -104,7 +152,7 @@ export default function ParseStudyGroupList(data: any) {
|
|||
longitude: 0,
|
||||
radius: 0,
|
||||
};
|
||||
filteredData.forEach((item: StudentStatusFilterType) => {
|
||||
unique_subject_list.forEach((item: StudentStatusFilterType) => {
|
||||
if (!subjectUserMap["users"]) {
|
||||
subjectUserMap["users"] = [];
|
||||
}
|
||||
|
|
|
@ -193,8 +193,13 @@ export default function Home() {
|
|||
return data;
|
||||
},
|
||||
onSuccess: (data: StudentStatusListReturnType) => {
|
||||
if (data[1]) {
|
||||
setStudyGroups(ParseStudentStatusList(data[1]));
|
||||
if (data[1] && location) {
|
||||
setStudyGroups(
|
||||
ParseStudentStatusList(data[1], {
|
||||
latitude: location.coords.latitude,
|
||||
longitude: location.coords.longitude,
|
||||
})
|
||||
);
|
||||
}
|
||||
},
|
||||
onError: (error: Error) => {
|
||||
|
|
Loading…
Reference in a new issue